Dany jest trójkąt o bokach 10 i 6 i kącie między nimi 120°. Promień okręgu opisanego na tym trójkącie jest równy:http:// strony.gdynianka.pl Zadanie 1. (1 pkt) Dla każdej dodatniej liczby a iloraz \frac{a^{−2,6}}{a^{1,3}} jest równy: A)a^{−3,9} B)a^{−2} C)a^{−1,3} D)a^{1,3} Zadanie 2. (1 pkt) Liczba log_{√2}(2√2) jest równa: A)\frac{3}{2} B)2 C)\frac{5}{2} D)3 Zadanie 3. (1 pkt) Liczby a i c są dodatnie. Liczba b stanowi 48\% liczby a oraz 32\% liczby c. Wynika stąd, że: A)c=1,5a B)c=1,6a C)c=0,8a D)c=0,16a Zadanie 4. (1 pkt) Równość (2√2−a)^2=17−12√2 jest prawdziwa dla: A)a=3 B)a=1 C)a=−2 D)a=−3 Zadanie 5. (1 pkt) Jedną z liczb, które spełniają nierówność −x^5+x^3−x3x^2−6x. Zadanie 28. (2 pkt) Rozwiąż równanie (4−x)(x^2+2x−15)=0. Zadanie 29. (2 pkt) Dany jest trójkąt prostokątny ABC. Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G. Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∢DEC|=|∢BGF|=90° (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta 29 – matura maj 2016 Zadanie 30. (2 pkt) Ciąg (a_n) jest określony wzorem a_n=2n^2+2n dla n≥1. Wykaż, że suma każdych dwóch kolejnych wyrazów tego ciągu jest kwadratem liczby naturalnej. Zadanie 31. (2 pkt) Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=log\frac{A}{A_0}, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A_0=10^{−4} cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 6,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od 100 cm. Zadanie 32. (4 pkt) Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50°. Oblicz kąty tego trójkąta. Zadanie 33. (5 pkt) Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt równoboczny ABC. Wysokość SO tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa 27. Oblicz pole powierzchni bocznej ostrosłupa ABCS oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa. Zadanie 34. (4 pkt) Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.

Uwaga:1) W tym filmie przedstawiam szybkie omówienie rozwiązań.2) Link do playlisty z rozwiązaniami szczegółowymi:https://www.youtube.com/playlist?list=PLkFb

Matura podstawowa z matematyki maj 2019 zadanie 31 W trapezie prostokątnym ABCD dłuższa podstawa AB W trapezie prostokątnym ABCD dłuższa podstawa AB ma długość 8. Przekątna AC tego trapezu ma długość 4 i tworzy z krótszą podstawą trapezu kąt o mierze 30∘ (zobacz rysunek). Oblicz długość przekątnej BD tego trapezu.
Chemia - Matura Maj 2016, Poziom rozszerzony (Formuła 2007) - Zadanie 31. Poniżej przedstawiono wzory dwóch monosacharydów. Oceń, czy poniższe informacje są prawdziwe. Zaznacz P, jeśli informacja jest prawdziwa, albo F – jeżeli jest fałszywa. 1.
Zadanie 1. (0-1) Dla każdej dodatniej liczby a iloraz \(\frac{{{a}^{-2,6}}}{{{a}^{1,3}}}\) jest równy A. a-3,9 B. a-2 C. a-1,3 D. a1,3 Zobacz na stronie Zobacz na YouTube Zadanie 2. (0-1) Liczba \({{\log }_{\sqrt{2}}}\left( 2\sqrt{2} \right)\) jest równa A. \(\frac{3}{2}\) B. 2 C. \(\frac{5}{2}\) D. 3 Zobacz na stronie Zobacz na YouTube Zadanie 3. (0-1) Liczby a i c są dodatnie. Liczba b stanowi 48% liczby a oraz 32% liczby c. Wynika stąd, że A. c =1,5a B. c =1,6a C. c = 0,8a D. c = 0,16a Zobacz na stronie Zobacz na YouTube Zadanie 4. (0-1) Równość \({{\left( 2\sqrt{2}-a \right)}^{2}}=17-12\sqrt{2}\) jest prawdziwa dla Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zadanie 5. (0-1) Jedną z liczb, które spełniają nierówność −x5 + x3 − x jest równa Treść dostępna po opłaceniu abonamentu. Zadanie 12. (0-1) Funkcja f określona jest wzorem \(f\left( x \right)=\frac{2{{x}^{3}}}{{{x}^{6}}+1}\) dla każdej liczby rzeczywistej x. Wtedy \(f\left( -\sqrt[3]{3} \right)\) jest równa A. \(-\frac{\sqrt[3]{9}}{2}\) B. \(-\frac{3}{5}\) C. \(\frac{3}{5}\) D. \(\frac{\sqrt[3]{3}}{2}\) Treść dostępna po opłaceniu abonamentu. Zadanie 13. (0-1) W okręgu o środku w punkcie S poprowadzono cięciwę AB, która utworzyła z promieniem AS kąt o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu S od cięciwy AB jest liczbą z przedziału A. \(\left\langle \frac{9}{2};\frac{11}{2} \right\rangle\) B. \(\left( \frac{11}{2}; \right.\left. \frac{13}{2} \right\rangle\) C. \(\left( \frac{13}{2}; \right.\left. \frac{19}{2} \right\rangle\) D. \(\left( \frac{19}{2}; \right.\left. \frac{37}{2} \right\rangle\) Treść dostępna po opłaceniu abonamentu. Zadanie 14. (0-1) Czternasty wyraz ciągu arytmetycznego jest równy 8, a różnica tego ciągu jest równa \(\left( -\frac{3}{2} \right)\). Siódmy wyraz tego ciągu jest równy A. \(\frac{37}{2}\) B. \(-\frac{37}{2}\) C. \(-\frac{5}{2}\) D. \(\frac{5}{2}\) Treść dostępna po opłaceniu abonamentu. Zadanie 15. (0-1) Ciąg (x,2x+3,4x+3) jest geometryczny. Pierwszy wyraz tego ciągu jest równy Treść dostępna po opłaceniu abonamentu. Zadanie 16. (0-1) Przedstawione na rysunku trójkąty ABC i PQR są podobne. Bok AB trójkąta ABC ma długość Treść dostępna po opłaceniu abonamentu. Zadanie 17. (0-1) Kąt \(\alpha\) jest ostry i \(tg\alpha =\frac{2}{3}\). Wtedy A. \(\sin \alpha =\frac{3\sqrt{13}}{26}\) B. \(\sin \alpha =\frac{\sqrt{13}}{13}\) C. \(\sin \alpha =\frac{2\sqrt{13}}{13}\) D. \(\sin \alpha =\frac{3\sqrt{13}}{13}\) Treść dostępna po opłaceniu abonamentu. Zadanie 18. (0-1) Z odcinków o długościach: 5,2a+1,a−1 można zbudować trójkąt równoramienny. Wynika stąd, że A. a = 6 B. a = 4 C. a = 3 D. a = 2 Treść dostępna po opłaceniu abonamentu. Zadanie 19. (0-1) Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek). Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe A. 14 B. \(2\sqrt{33}\) C. \(4\sqrt{33}\) D. 12 Treść dostępna po opłaceniu abonamentu. Zadanie 20. (0-1) Proste opisane równaniami \(y=\frac{2}{m-1}x+m-2\) oraz \(y=mx+\frac{1}{m+1}\) są prostopadłe, gdy A. m=2 B. \(m=\frac{1}{2}\) C. \(m=\frac{1}{3}\) D. m=-2 Treść dostępna po opłaceniu abonamentu. Zadanie 21. (0-1) W układzie współrzędnych dane są punkty A=(a,6) oraz B=(7,b) . Środkiem odcinka AB jest punkt M=(3,4) . Wynika stąd, że A. a = 5 i b = 5 B. a = −1 i b = 2 C. a = 4 i b = 10 D. a = −4 i b = −2 Treść dostępna po opłaceniu abonamentu. Zadanie 22. (0-1) Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy A. 0 ≤ p 3x2−6x . Treść dostępna po opłaceniu abonamentu. Zadanie 28. (0-2) Rozwiąż równanie (4−x)(x2+2x−15)=0 . Treść dostępna po opłaceniu abonamentu. Zadanie 29. (0-2) Dany jest trójkąt prostokątny ABC. Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G. Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że \(\left| \angle DEC \right|=\left| \angle BGF \right|=90{}^\circ\) (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta FBG. Treść dostępna po opłaceniu abonamentu. Zadanie 30. (0-2) Ciąg (an) jest określony wzorem an=2n2+n dla n≥1. Wykaż, że suma każdych dwóch kolejnych wyrazów tego ciągu jest kwadratem liczby naturalnej. Treść dostępna po opłaceniu abonamentu. Zadanie 31. (0-2) Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem \(R=\log \frac{A}{{{A}_{0}}}\), gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A0=10−4cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 6,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od 100 cm. Treść dostępna po opłaceniu abonamentu. Zadanie 32. (0-4) Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50° . Oblicz kąty tego trójkąta. Treść dostępna po opłaceniu abonamentu. Zadanie 33. (0-5) Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt równoboczny ABC . Wysokość SO tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa 27. Oblicz pole powierzchni bocznej ostrosłupa ABCS oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa. Treść dostępna po opłaceniu abonamentu. Zadanie 34. (0-4) Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego. Treść dostępna po opłaceniu abonamentu. Matura z matematyki – Spis treści Matura z matematyki 2017 – Maj podstawowa Matura z matematyki 2016 – Maj podstawowa Matura z matematyki 2015 – Maj podstawowa Próbna matura z matematyki 2015 – CKE podstawowa Przykładowa matura z matematyki 2015 CKE Matura z matematyki 2014 – Maj podstawowa Matura z matematyki 2013 – Maj podstawowa Matura z matematyki 2013 – Czerwiec podstawowa Matura z matematyki 2012 – Maj podstawowa Matura z matematyki 2012 – Czerwiec podstawowa Matura z matematyki 2012 – Sierpień podstawowa Matura z matematyki 2011 – Maj podstawowa Matura z matematyki 2010 – Maj podstawowa Matura z matematyki 2009 – Maj podstawowa Matura z matematyki 2008 – Maj podstawowa Matura z matematyki 2007 – Maj podstawowa Matura z matematyki 2006 – Maj podstawowa Matura z matematyki 2005 – Maj podstawowa Matura z matematyki 2003 – Maj podstawowa Bądź na bieżąco z http://www.mim-sraga.com/zbirke potpuno riješenih zadataka - priručnici za samostalno učenjematematika 4, matematika 3, matematika 2
Opublikowane w przez Matura maj 2016 zadanie 25 Średnia arytmetyczna sześciu liczb naturalnych: 31,16,25,29,27,x jest równa x/2. Mediana tych liczb jest równa:Średnia arytmetyczna sześciu liczb naturalnych: 31,16,25,29,27,x jest równa x/2. Mediana tych liczb jest równa:Chcę dostęp do Akademii!

Rozważamy wszystkie liczby naturalne pięciocyfrowe zapisane przy użyciu cyfr 1, 3, 5, 7, 9, bez powtarzania jakiejkolwiek cyfry. Oblicz sumę wszystkich takic

Przygotowano dwa wodne roztwory kwasu metanowego (mrówkowego) o temperaturze t=20°C: roztwór pierwszy o pH=1,9 i roztwór drugi o nieznanym pH. Stopień dysocjacji kwasu w roztworze pierwszym jest równy 1,33%, a w roztworze drugim wynosi 4,15%. Oblicz pH roztworu, w którym stopień dysocjacji kwasu metanowego jest równy 4,15%. Wynik końcowy zaokrąglij do pierwszego miejsca po przecinku. W rozwiązaniu podany jest wzór Ka=α²c, a poprawną odpowiedzią jest 2,4. Ja natomiast postanowiłam zadanie zrobić w inny sposób. pH=1,9 czyli korzystając z tablic stężenie Cz= α=Cz1/Co 0,0133=0,013/Co Co=0,013/0,0133≈0,977444 0,0415=Cz/0,977444 Cz2=0,977444*0,0415 Cz2≈0,41*10¯¹ pH=-log(0,41*10¯¹)=0,4+1=1,4 Czy to ja popełniłam gdzieś błąd czy po prostu nie można wykorzystać tego wzoru. Jeśli nie wolno to poproszę o wyjaśnienie dlaczego. 2015. Całe w Pythonie, podobnie jak 2017. Odpowiedzi tutaj: wynik4.txt. wynik5.txt. wynik6.txt. 2016. Jedynie zadanie 6. Odpowiedzi tutaj: wyniki6_1.txt. wyniki6_2.txt Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem , gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A0=10-4 cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 6,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii i rozstrzygnij, czy jest ona większa, czy – mniejsza od 100 cm. Rozwiązanie zadania ze szczegółowymi wyjaśnieniami Podstawiamy pod wzór dane wymienione w treści zadania i otrzymujemy równanie: Korzystamy bezpośrednio z definicji logarytmu: Dostajemy zatem: Nie musimy obliczać tej wartości, bo zauważamy, że funkcja wykładnicza jest rosnąca i: 102,2 cm>102 cm = 100 cm Odpowiedź Amplituda trzęsienia ziemi w Tajlandii była większa niż 100 cm© 2016-11-01, ZAD-3257 Zadania podobne Zadanie - wyznaczanie logarytmów, logarytmy, obliczanie logarytmówPrzedstaw liczbę 0,2 jako sumę trzech logarytmów o różnych rozwiązanie zadaniaZadanie - oblicznie logarytmówOblicz:Pokaż rozwiązanie zadaniaZadanie maturalne nr 2, matura 2015 (poziom podstawowy)Dane są liczby . Iloczyn abc jest równy: A. -9 B. -1/3 C. 1/3 D. 3Pokaż rozwiązanie zadania Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu. © ® Media Nauka 2008-2022 r. Drogi Internauto! Aby móc dostarczać coraz lepsze materiały i usługi potrzebujemy Twojej zgody na zapisywanie w pamięci Twojego urządzenia plików cookies oraz na dopasowanie treści marketingowych do Twojego zachowania. Dzięki temu możemy utrzymywać nasze cookies w celach funkcjonalnych oraz w celu tworzenia anonimowych statystyk. Ddbamy o Twoją udzielić nam zgody na profilowanie i remarketing musisz mieć ukończone 16 lat. Brak zgody nie ograniczy w żaden sposób treści naszego serwisu. Udzieloną nam zgodę w każdej chwili możesz wycofać w Polityce prywatności lub przez wyczyszczenie historii zgody oznacza wyłączenie profilowania, remarketingu i dostosowywania treści. Reklamy nadal będą się wyświetlać ale w sposób przypadkowy. Nadal będziemy używać zanonimizowanych danych do tworzenia statystyk serwisu. Dalsze korzystanie ze strony oznacza, że zgadzasz się na takie użycie się z naszą Polityką ZGODY ZGODA . 445 370 448 115 420 203 132 68

matura maj 2016 zad 31